
Training in “Computer Survival Skills”

for students in the Biological,

Mathematical, and Physical Sciences

John W. Heimaster

Draft of January 6, 2009

Our incoming students have grown up in a digital, multimedia world.
They depend upon its services for much of their information and most of
their entertainment. This experience has given them remarkable computer

literacy in some areas, but they lack several basic skills needed for science
education and science research. I propose that we provide our students a
systematic introduction to the computational tools of the modern scientist,
allowing us to enrich many of our courses and to prepare our students for
the research laboratory.

The computing environment of the modern scientist extends far beyond
the numerical mathematics of previous decades. We use powerful tools for
symbolic and numerical mathematics (Mathematica and Matlab), document
preparation (TEX), control of lab instruments (LabView), graphics, literature
searching, management of large volumes of data, and many other tasks. We
hesitate to use these same tools in our courses, since many of our students
are not trained, and we do not wish to spend precious class time training
them in each course. We could pose more realistic class problems and could
receive more professional documents in our classes if our students were al-
ready trained. In our research labs we expect all necessary skills to flow from
student to student, and we are continually surprised by the gaps in students’
knowledge.

In an environment of limited available credit hours, it will be difficult to
introduce any new content. This material must be presented very compactly,
in a way that immediately improves the efficiency of other courses. OSU
Engineering has been teaching Matlab in the Freshman Year (Engineering

1



183), and then using specific Matlab toolboxes for statistics, circuit analysis,
etc., throughout their curricula.

For our purposes, I propose three few-credit-hour courses:

• An introductory course, taken very early in a student’s career, empha-
sizing skills useful in many subsequent science courses.

• An advanced course, taken in the third or fourth year, emphasizing
skills useful in research and skills too sophisticated for the introductory
course.

• An optional course for incoming graduate students who did not obtain
these skills at their previous institutions.

Such courses do not substitute for conventional courses in programming,
numerical analysis, or computational science that are taken by many of our
students. Rather, they are intended to introduce a set of “survival skills”
that are not covered in such courses, and which students are often expected
to learn somehow. We all learned (some of) these skills that way, and there
is no excuse for inflicting the same learning process on today’s students.

1 Introductory Course

This course should prepare the student to succeed in future science courses. It
should be taught as early as possible, despite the students’ limited knowledge
of mathematics. At a minimum, it should:

• Introduce the many roles of computers in science.

• Acquaint the students with available software for their personally-
owned computers. The major packages of interest are Matlab, licensed
campuswide by the College of Engineering, and Mathematica, licensed
campuswide by MAPS. These can be (and should be) installed on each
student’s personal computer(s).

• Provide basic training in Matlab and Mathematica.

• Discuss the rudiments of numerical analysis: errors and rounding, root
finding, numerical integration, Monte Carlo methods.

2



• Discuss the program development process.

• Introduce document preparation with equations and figures.

• Introduce basic statistics.

• Discuss some exciting topics that the student has heard about: parallel
computing, grid computing, large-scale data management.

In each case, it is more important that the students be aware of many topics
and tools than that they master a few. This material should be team-taught
by real practitioners.

2 Advanced Course

This course should complete the students’ introduction to scientific comput-
ing, with emphasis on techniques for research. This course should:

• Discuss more advanced numerical analysis: linear algebra, differential
equations, optimization, stability of solutions.

• Discuss TEX and LATEX.

• Discuss the searching of scientific literature; the staff of the Science and
Engineering Library might participate here.

• Discuss laboratory computers, data acquisition, and data preservation.

• Discuss more serious statistics: regression, confidence tests, and exper-
imental design.

• Discuss the use of high-performance computing facilities.

• Demonstrate the use of presentation tools, including Internet videocon-
ferencing and multimedia archiving.

This course must be team-taught, due to its breadth. It seems desirable to
partition it into two pieces: common content for all our students (perhaps
80%) and discipline-specific content. For example, the specialized material
might include the drawing of chemical structures, or might emphasize mod-
elling for theorists and data mining for experimentalists.

3



3 Graduate Course

This course should combine much of the two undergraduate courses. Since
the students’ mathematics preparation is strong, some rearrangement of
material is appropriate. This course should also be team-taught, with a
discipline-specific component.

4 Implementation

Much of this material can be effectively learned outside of class, exploiting
formats such as Mathematica notebooks. A collection of individual modules
might be appropriate, with self-paced delivery. Classroom time could then
be devoted to real examples, showing the relevance of these topics to the
students’ future careers.

5 Related Work

Several OSU departments teach courses that partially overlap the material
discussed here. Physics teaches some introductory material in a required
undergraduate lab course. Both Chemistry and Physics teach courses in the
computational aspects of their respective disciplines. Mathematics teaches a
one-quarter course in numerical methods, a one-quarter course in numerical
solution of PDEs, and a three-quarter course in numerical methods in science.
Computer Science and Engineering teaches a course in numerical analysis, a
course in high-performance computing, and a course in parallel computing.
These are generally much narrower and deeper than the courses contemplated
here, are taken by a small minority of students, and are taken at the senior
or graduate level.

A recent paper1 asserts:

To be able to invoke computational approaches when appro-
priate, physicists must be acquainted with at least one operating
system, a versatile text editor, a spreadsheet program, an ar-
ray/number processor, a computer algebra system, a visualization
tool, a programming language that supports standard packages

1David M. Cook, Computation in undergraduate physics: The Lawrence approach,
American Journal of Physics, Vol. 76, Nos. 4 and 5 (April/May 2008)

4



and libraries, a program for circuit simulation, a program for data
acquisition, a technical publishing system with the capability for
easy inclusion of equations and figures, a drawing program for
creating publication quality figures, and a presentation program.
The curricula that train these physicists must include an exposure
to at least some of these approaches and tools.

The paper describes a curriculum that distributes much of this material
throughout a four-year curriculum, including a required course in Compu-
tational Mechanics and an elective course in Computational Physics (in-
troduced “after several unsuccessful attempts to incorporate its topics as
components of other upper-level courses”).

6 Disclaimer

The writer’s background is Physics and Engineering, which has strongly in-
fluenced the choice of course topics. A broad conversation is needed to design
courses to serve our many disciplines.

5


